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Overview
1. Some causality theory

2. Approaches to causality in dynamical 
systems

1. Granger Causality

2. Convergent Cross Mapping

3. Mixed-State Methods

3. Some directions for future work



A Neuroscience Problem
Does neural activity in the thalamus 
cause activity in the prefrontal 
cortex?

The Problem: Given a dataset, it is 
unclear if

• Thalamus influences PFC 
unidirectionally.

• Thalamus and PFC are coupled.

• Thalamus and PFC are both 
driven by a (latent) activity in the 
rest of the brain.

PFC

Thalamus



Causal Inference
Causal inference is the subject that 

attempts to distinguish cause-and-

effect from statistical correlation.

The most popular theory of causal 

inference studies interventions. 

Example:

If a drug causes patients to recover 

from a disease sooner, 

then taking the drug (an intervention) 

should change the probability 

distribution of recovery time.

𝐷 𝑅

𝐷: Boolean (0,1) equal to 1 if patient receives 
drug.
𝑅: Time needed to recover from disease.

𝑝 𝑅, 𝐷 = 𝑝 𝑅 𝐷 𝑝 𝐷
𝑅

𝑝 𝑅 𝐷
𝐷 = 1

𝐷 = 0



do-Calculus
When we intervene on a system, the 

causal graph should change.

The do operator tells us how to 

modify a graph when we intervene 

on a system.†

Consider an intervention where we 

force 𝐶 = 3. 

The do operator says that we replace 

𝑝 𝐶 𝐴, 𝐵 with 𝑝 𝐶⋆ = 𝛿 𝐶⋆ − 3 .

𝐴

𝐵

𝐶

𝐷

Original Graph
𝑝 𝐴, 𝐵, 𝐶, 𝐷 = 𝑝 𝐷 𝐵, 𝐶 𝑝 𝐶 𝐴, 𝐵 𝑝 𝐵 𝐴 𝑝 𝐴

𝐴

𝐵

𝐶⋆

𝐷

Graph after Invention
𝑝𝑑𝑜 𝐴, 𝐵, 𝐶⋆, 𝐷 = 𝑝 𝐷 𝐵, 𝐶⋆ 𝑝 𝐶⋆ 𝑝 𝐵 𝐴 𝑝 𝐴

† Pearl, J., 2009. Causality. Cambridge university press.



Causal Inference with Processes
Causal inference is much harder 
when we include time in the model.

• Interactions could be lagged or 
have propagation delays.

• Influences could be bidirectional.

• It’s not obvious how to generalize 
the do operator to the time 
domain.

• It’s not obvious how to draw 
causal graphs for continuous 
time.

ARX Models
𝑥𝑛+1 = 𝛼𝑥𝑛 + 𝜀𝑛
𝑦𝑛+1 = 𝛽𝑥𝑛 + 𝛿𝑦𝑛 +𝜔𝑛
𝜀𝑛, 𝜔𝑛~𝑁 0,1 i. i. d.

𝑥1

𝑦1

𝑥2

𝑦2

𝑥3

𝑦3

⋯

⋯

† Peters, J., Janzing, D. and Schölkopf, B., 2017. Elements of causal inference: foundations and learning algorithms (p. 288). The MIT Press



Granger Causality
GC is one of the oldest approaches 

to causal inference for processes.

We say that a signal 𝑥𝑡 Granger-

causes a signal 𝑦𝑡 if 

𝑝 𝑦𝑡+1 𝑥1:𝑡, 𝑦1:𝑡, 𝑧1:𝑡
≠ 𝑝 𝑦𝑡+1 , 𝑦1:𝑡 , 𝑧1:𝑡

i.e. the history of 𝑥𝑡 contains unique 

information that can be used to 

predict 𝑦𝑡+1.

Testing of the Granger hypothesis can be 

done using linear models (linear GC) or 

transfer entropy (general GC). †

Despite it’s popularity, Granger causality 

has some caveats:

• GC requires signals to be stochastic and 

stationary.

• Dynamical systems may violate the 

assumptions of GC (separability).‡

• It’s difficult to condition on signals that

we don’t observe (𝑧𝑡).

† Yuan, A.E. and Shou, W., 2021. Data-driven causal analysis of observational time series in ecology. bioRxiv, pp.2020-08.
‡ Sugihara, G., May, R., Ye, H., Hsieh, C.H., Deyle, E., Fogarty, M. and Munch, S., 2012. Detecting causality in complex ecosystems. science, 338(6106), pp.496-500.



Low Dimensional Dynamics in Neuroscience
• Real-life neurological systems are 

clearly high-dimensional.

• However, in some cases the

dynamics of the population may 

reside in a lower dimensional 

manifold.
Butler et. al. (2022), in 
review.

† Chaudhuri, R., Gerçek, B., Pandey, B., Peyrache, A. and Fiete, I., 2019. The intrinsic attractor manifold and population dynamics of a canonical cognitive circuit across waking and sleep. Nature neuroscience, 22(9), 
pp.1512-1520.
‡ Rubin, A., Sheintuch, L., Brande-Eilat, N., Pinchasof, O., Rechavi, Y., Geva, N. and Ziv, Y., 2019. Revealing neural correlates of behavior without behavioral measurements. Nature communications, 10(1), pp.1-14.
* Butler K., Feng, G., Mikell, C., Mofakham, S., and Djurić, P.M., 2022, May. Predicting Latent States of Dynamical Systems with State-Space Reconstruction and Gaussian Processes. In review to be published in ICASSP 
2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.

Chaudhuri et. al. (2019)

Rubin et. al. (2019).



State Space Models
Linear state model

ሶ𝐱 𝑡 = 𝐀𝐱 𝑡

For some matrix 𝐀.

• The possible dynamics are 

determined by the eigenvalues of 𝐀.

• The only set that may attract 

trajectories is the origin.

• Solution curves can be computed 

directly by the matrix exponential.

Nonlinear state model

ሶ𝐱 = 𝐹 𝐱

For some smooth function 𝐹.

• Even simple functions can produce 

chaotic dynamics (e.g. logistic 

function).

• Attracting sets can be arbitrarily 

complicated or even fractal.

• Solution curves can only be 

computed if the ODE is tractable.



Attractors and Invariant Sets
• An attractor is a subset of the 

state space that attracts and 

traps state trajectories.

• Even simple nonlinear systems 

can have attractors with 

complicated geometry.

• We can exploit the existence of 

low-dimensional attractors to do 

scientific tasks like causal 

inference.



State Space Reconstruction
Given a (scalar) signal 𝑦 𝑡 , we 

define the 𝑄-dimensional delay 

embedding 𝐦𝑦 𝑡 as a vector-

valued signal:
𝐦𝑦 𝑡 = 𝑦 𝑡 − 𝑄 − 1 𝜏 ⋯ 𝑦 𝑡 − 𝜏 𝑦 𝑡

Taken’s theorem† says that the 

delay embedding an observation 

signal will embed the latent attractor 

whenever 𝑄 > 2𝑑𝐴 (almost surely).

Delay embedding gives a 
diffeomorphism between 
the latent attractor 𝐴 and 
the shadow manifold 𝑀𝑥.

𝑀𝑥

“shadow 
manifold”

† Sauer, T., Yorke, J.A. and Casdagli, M., 1991. Embedology. Journal of statistical Physics, 65(3), pp.579-616.

ሶ𝐱 = 𝐹 𝐱
𝑦 = 𝐺 𝐱



Convergent Cross Mapping
If one signal drives the other, then

there exists a cross-map between 

the shadow manifolds that goes in 

the opposite direction. †

Causal graph:

Shadow manifolds:

𝑥 𝑦

𝑀𝑥 𝑀𝑦

† Sugihara, G., May, R., Ye, H., Hsieh, C.H., Deyle, E., Fogarty, M. and Munch, S., 2012. Detecting causality in complex ecosystems. science, 338(6106), pp.496-500.
‡ Feng, G., Yu, K., Wang, Y., Yuan, Y. and Djurić, P.M., 2020, May. Improving Convergent Cross Mapping for Causal Discovery with Gaussian Processes. In ICASSP 2020-2020 IEEE 
International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 3692-3696). IEEE.



CCM Example

To test if there is an arrow 𝑥 → 𝑦:

1. Produce the shadow manifold

𝑀𝑦.

2. Learn the cross-map and make 

predictions ො𝑥 = 𝑓 𝐦𝑦 .

3. Repeat this procedure in an

online manner, and check if the

cross-map is converging to an 

accurate estimator.

𝑦1 𝑦2 𝑦3 𝑦4



Caveats of CCM
• If there are not attractors or invariant

sets in the latent space, then
learning the cross-map from data is 
infeasible.

• CCM does not work for largely 
stochastic systems.

• CCM can mistake strong 
unidirectional forcing for 
bidirectional coupling.

• CCM tests for causality in the latent 
space.

𝑥 𝑦

𝑧𝑥 𝑧𝑦

𝑥 𝑦

𝑥 𝑦May be 
mistaken for



Mixed-State Methods
Mixed-state SSR is when we 
concatenate the delay-embedding 
vectors of various measurements.

𝐦𝑥𝑦 𝑡 = 𝐦𝑥 𝑡 ,𝐦𝑦 𝑡

The mixed-state embedding does
not duplicate topological 
information.

Therefore, the dimensions of the 
shadow manifolds can identify 
common causes. † 

† Benko, Z., Zlatniczki, A., Fabó, D., Sólyom, A., Eross, L., Telcs, A. and Somogyvári, Z., 2018. Exact inference of causal relations in dynamical systems. arXiv preprint 
arXiv:1808.10806.

𝑧

𝑥

𝑦

𝑀𝑥𝑦 ≅ 𝑀𝑥 ≅ 𝑀𝑦

dim 𝑀𝑥𝑦 = dim 𝑀𝑥

= dim 𝑀𝑦

𝑧

𝑥

𝑦

𝑀𝑥𝑦 ≅ 𝑀𝑥 ×𝑀𝑦

dim 𝑀𝑥𝑦

= dim 𝑀𝑥 + dim 𝑀𝑦



Mixed-State Methods

𝑧

𝑥

𝑦

𝑥 𝑡 = sin 𝑓𝑡
y 𝑡 = sin 𝑓𝑡 + 𝜙

𝑀𝑥 ≅ 𝒞
𝑀𝑦 ≅ 𝒞

𝑀𝑥𝑦 ≅ 𝒞 × 𝒞

𝑧𝑥

𝑧𝑦

𝑥

𝑦

𝑥 𝑡 = sin 𝑓1𝑡
y 𝑡 = sin 𝑓2𝑡
𝑓1/𝑓2 ∉ ℚ

𝑀𝑥 ≅ 𝒞
𝑀𝑦 ≅ 𝒞

𝑀𝑥𝑦 ≅ 𝒞



Directions for future work
• Methods for analyzing systems with 

both stochastic and dynamical 
elements. 

• Applications of state-space 
reconstruction to systems without 
attractors.
• Modeling latent dynamics and 

properties (e.g., dissipation)

• Static causal inference

• Time-varying causal inference

• Generalization of CCM and other 
methods to more than pairs of 
variables.


